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Abstract

Although MEG/EEG signals are highly variable, systematic changes in distinct frequency bands are commonly encountered. These
frequency-specific changes represent robust neural correlates of cognitive or perceptual processes (for example, alpha rhythms emerge on
closing the eyes). However, their functional significance remains a matter of debate. Some of the mechanisms that generate these signals
are known at the cellular level and rest on a balance of excitatory and inhibitory interactions within and between populations of neurons.
The kinetics of the ensuing population dynamics determine the frequency of oscillations. In this work we extended the classical nonlinear
lumped-parameter model of alpha rhythms, initially developed by Lopes da Silva and colleagues [Kybernetik 15 (1974) 27], to generate
more complex dynamics. We show that the whole spectrum of MEG/EEG signals can be reproduced within the oscillatory regime of this
model by simply changing the population kinetics. We used the model to examine the influence of coupling strength and propagation delay
on the rhythms generated by coupled cortical areas. The main findings were that (1) coupling induces phase-locked activity, with a phase
shift of 0 or � when the coupling is bidirectional, and (2) both coupling and propagation delay are critical determinants of the MEG/EEG
spectrum. In forthcoming articles, we will use this model to (1) estimate how neuronal interactions are expressed in MEG/EEG oscillations
and establish the construct validity of various indices of nonlinear coupling, and (2) generate event-related transients to derive physiolog-
ically informed basis functions for statistical modelling of average evoked responses.
© 2003 Elsevier Inc. All rights reserved.

1. Introduction

It is generally assumed that the signals measured in
magnetoencephalography (MEG) and electroencephalogra-
phy (EEG) can be decomposed into distinct frequency
bands (delta: 1–4 Hz, theta: 4–8 Hz, alpha: 8–12 Hz, beta:
12–30 Hz, gamma: 30–70 Hz) (Nunez, 1981). These
rhythms sometimes exhibit robust correlates of behavioural
states but often with no obvious functional role. It is clear
that MEG/EEG signals result mainly from extracellular cur-
rent flow, associated with massively summed postsynaptic
potentials in synchronously activated and vertically oriented
neurons (dendritic activity of macro-columns of pyramidal
cells in the cortical sheet). The exact neurophysiological
mechanisms, which constrain this synchronisation to a
given frequency band, remain obscure. However, the gen-

eration of oscillations appears to depend on interactions
between inhibitory and excitatory populations, whose kinet-
ics determine their oscillation frequency. This dependency
suggests a modelling strategy could help to disclose the
causes of different MEG/EEG rhythms and to characterise
the neuronal processes underlying MEG/EEG activity.

There are several ways to model neural signals (Whit-
tington et al., 2000a): either using a detailed model, in
which it is difficult to determine the influence of each model
parameter, or a simplified one, in which realism is sacrificed
for a more parsimonious description of key mechanisms.
The complexity of neural networks generating MEG/EEG
signals is such that the second approach is usually more
viable. This involves modelling neuronal activity with sim-
plifying assumptions and empirical priors to emulate real-
istic signals. Neural mass models (Freeman, 1978; Lopes da
Silva et al., 1974; Robinson et al., 2001; Stam et al., 1999;
Valdes et al., 1999; Wendling et al., 2000) are based upon
this approach. These models comprise macro-columns, or

* Corresponding author. Fax: �44-207-813-1420.
E-mail address: odavid@fil.ion.ucl.ac.uk (O. David).

NeuroImage 20 (2003) 1743–1755 www.elsevier.com/locate/ynimg

1053-8119/$ – see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.neuroimage.2003.07.015



even cortical areas, using only one or two state variables to
represent the mean activity of the whole population. This
procedure, sometimes referred to as a “mean-field approx-
imation,” is very efficient for determining the steady-state
behaviour of neuronal systems, but its utility in a dynamic
or nonstationary context is less established (Haskell et al.,
2001). The majority of neural mass models of EEG re-
sponses have been designed to model alpha rhythms (Jansen
and Rit, 1995; Lopes da Silva et al., 1974; Stam et al.,
1999). Recent studies have emphasised that the kinetics of
inhibitory populations have a key influence on the signals
generated (Wendling et al., 2002). Specifically, it has been
suggested that fast inhibition kinetics are needed to produce
gamma-like activity (Jefferys et al., 1996). In fact, MEG/
EEG signals depend upon the kinetics of both inhibitory and
excitatory neural populations, and exhibit very complex
dynamics because of the huge diversity and connectivity of
cortical areas.

In this study we describe a simple neural mass model that
can produce various rhythms ranging from delta to gamma,
depending on the kinetics of the populations modelled. We
start from the model of Jansen and Rit, (1995) using stan-
dard parameters to produce alpha activity in a single area.
We then show that variation of excitatory and inhibitory
kinetics, within a physiologically plausible range, can gen-
erate oscillatory activity in the delta, theta, alpha, beta, and
gamma bands using the same model. Next, we assume that
a cortical area comprises several resonant neuronal popula-
tions, characterised by different kinetics. We describe the
particular case of two populations that underlie intrinsic
alpha and gamma rhythms. In this dual-kinetic model, a
single parameter controls the relative contribution of fast
and slow populations, leading to a modulation of the
rhythms produced. Finally, we address the coupling of two
areas, with a particular focus on the dependence of cortical
rhythms upon the strength of the coupling and upon the
distance between cortical areas (modelled as a propagation
delay). Using several sets of parameters, we show that this
model can generate a wide variety of oscillations in the
alpha, beta, and gamma bands that are characteristic of
MEG/EEG signals.

The goal of this study is to introduce and characterise the
behaviour of the model. This is the first component of a
broader program that aims to (1) quantify the sensitivity of
linear and nonlinear methods for the detection of long-range
cortical interactions using MEG/EEG signals, and (2) model
event-related dynamics and derive basis functions for sta-
tistical models of averaged evoked potentials/fields.

2. Neural mass models

MEG/EEG signals are generated by the massively syn-
chronous dendritic activity of pyramidal cells. Modelling
MEG/EEG signals is seldom tractable using realistic mod-
els, at the neuronal level, because of the complexity of real

neural networks. Since the 1970s (Freeman, 1978; Lopes da
Silva et al., 1974; Nunez, 1974; Wilson and Cowan, 1972)
the preferred approach has been the use of neural mass
models, i.e., models that describe the average activity with
a small number of state variables. These states summarise
the behaviour of millions of interacting neurons. Basically,
these models use two conversion operations (Jirsa and
Haken, 1997; Robinson et al., 2001): a wave-to-pulse op-
erator at the soma of neurons, which is generally a static
sigmoid function, and a linear pulse-to-wave conversion
implemented at a synaptic level, within the ensemble. The
first operator relates the mean firing rate to average postsyn-
aptic depolarisation. This is assumed to be instantaneous.
The second operator depends on synaptic kinetics and mod-
els the average postsynaptic response as a linear convolu-
tion of incoming spike rate. The shape of the convolution
kernels embodies the synaptic and dendritic kinetics of the
population.

We based our work on the Jansen model (Jansen and Rit,
1995), which is one of the simplest models that are estab-
lished in the literature. First, we present this model and then
make modifications that engender richer dynamics.

2.1. Models of a single area

2.1.1. Jansen’s model
Jansen’s model (Jansen and Rit, 1995) is based upon a

previous lumped parameter model (Lopes da Silva et al.,
1974). The basic idea behind these models is to make
excitatory and inhibitory populations interact such that os-
cillations emerge. A cortical area, understood here as an
ensemble of strongly interacting macro-columns, is mod-
elled by a population of excitatory pyramidal cells, receiv-
ing (1) inhibitory and excitatory feedback from local (i.e.,
intrinsic) interneurons, and (2) excitatory input from neigh-
bouring or remote (i.e., extrinsic) areas. Any extrinsic input
is represented by a pulse density p(t) (c.f. neuronal firing
rate), which depends on time t. In this work p(t) is modelled
by a stochastic Gaussian process.

The evolution of the population dynamics rests on two
operators. The first transforms the average density of pre-
synaptic input m(t) [that includes p(t)] arriving at the pop-
ulation into an average postsynaptic membrane potential
(PSP) v(t). This is modelled by the linear transformation

v � h � m (1)

where R denotes the convolution operator in the time do-
main and h is the impulse response or first-order kernel

h�t� � �H t

�
exp�� t

�� t � 0

0 t � 0
(2)
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The excitatory (e) and inhibitory (i) kernels, he and hi,
respectively, are parameterised by He,i and �e,i modelling
specific properties of inhibition and excitation. The param-
eters He,i tune the maximum amplitude of PSPs and �e,i are
a lumped representation of the sum of the rate constants of
passive membrane and other spatially distributed delays in
the dendritic tree.

The second operator transforms the average membrane
potential of the population into an average rate of action
potentials fired by the neurons. This transformation is as-
sumed to be instantaneous and is described by the sigmoid
function

Sk��� �
ck

1e0

1 � exp �r��0 � ck
2���

(3)

for the kth subpopulation. ck
1,2, e0, r, and �0 are parameters

that determine its shape (e.g., voltage sensitivity).
Interactions among the different subpopulations are char-

acterised by constants ck
1,2, which account for the intrinsic

circuitry and the total number of synapses expressed by the
subpopulation’s interneurons and pyramidal cells. These
constants can be estimated using anatomical information
from the literature, as described by Jansen and Rit (1995).
The model is summarised in Fig. 1 using both state-space

and kernel representations. These representations are math-
ematically equivalent. We use the kernel representation to
summarise the architecture of subsequent extensions below,
but integrate the differential equations of the state-space
form when simulating dynamics per se.

The MEG/EEG signal is assumed to be modelled by y(t),
the average depolarisation of pyramidal cells (Fig. 1). For
the sake of simplicity, we ignore the observation equation,
i.e., how y(t) is measured. This includes not only the effects
of amplifiers (which are an additional band-pass filter), but
also the MEG/EEG lead fields that indicate the spatial
distribution of the electromagnetic field in the head using
Maxwell equations and suitable head models (Baillet et al.,
2001). For given synaptic responses h and sigmoid func-
tions S, the Jansen model can produce a large variety of
MEG/EEG-like waveforms (broad-band noise, epileptic-
like activity) and alpha rhythms (Jansen and Rit, 1995;
Wendling et al., 2000). In this study we were interested in
oscillatory signals. Consequently, we consider the Jansen
model in its oscillatory regime, which is obtained using the
set of parameters shown in Table 1. As described by Jansen
and Rit (1995), these produce a well-defined alpha activity.
However, a modification of the parameters can lead to the
generation of faster and slower oscillations as shown next.

Fig. 1. Equivalent state-space and kernel representations of the Jansen neural mass model. Three different populations of neurons (excitatory pyramidal cells,
excitatory stellate cells, and inhibitory interneurons) compose a cortical area. The extrinsic input p acts on excitatory spiny stellate cells. The MEG/EEG signal
y is the dendritic depolarisation of excitatory pyramidal cells. The mean-field approximation describes the state of each neuronal population by the average
membrane potential � and mean firing rate m. The transformation from m to � is described by the kinetic-dependent operator h, while the converse nonlinear
transformation S is assumed to be sigmoid and instantaneous.
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2.1.2. Extension of the Jansen model to multiple
populations

In the oscillatory mode, the model described above pro-
duces a narrow-band signal, the frequency of which depends
on the neuronal time constants adopted in h. To reproduce
richer oscillatory MEG/EEG signals (including broad and
multi-band spectra), we now extend the Jansen model. We
assume that the Jansen model is sufficient to reproduce the
dynamics of a single cell assembly. To capture the diversity
of neuronal networks within the thalamocortical system
(Steriade, 2001), we model a cortical area with N popula-
tions, deployed in parallel, with different kinetics for each
subpopulation (excitatory and inhibitory). As shown in Fig.
2, the extended model derives from the Jansen model in the
simplest way by creating multiple subpopulations with ker-
nels  he,i

1 ,. . ., he,i
N  that embody different kinetics. The im-

plicit assumptions are that (1) the different ensembles
express the same cytoarchitectonic structure (identical con-

stants ck
1,2), and (2) have the same inputs (on average). The

parameters wn, n � [1, . . ., N], bounded between 0 and 1,
adjust the relative proportion of each population in the
cortical area. They respect the constraint �n�1

N wn � 1 and
can be time-dependent, modelling short-term synaptic plas-
ticity that can occur, for instance, during attentional modu-
lation. In the next subsection we consider how the model
can be further generalised to multiple areas.

2.2. Models of multiple areas

Neurophysiological studies have shown that cortical out-
puts to distant targets are exclusively excitatory. Moreover,
experimental evidence suggests that MEG/EEG activity is
generated by strongly coupled but remote cortical areas
(David et al., 2002; Engel et al., 2001; Rodriguez et al.,
1999; Varela et al., 2001). Fortunately, modelling excitatory
coupling is straightforward using the Jansen model and

Table 1
Physiological interpretation and standard values of model parameters (adapted from Wendling et al., 2000)

Parameter Physiological interpretation Standard value

He,i Average synaptic gain He � 3.25 mV, Hi � 22 mV
�e,i Membrane average time constant and dendritic tree average time delays �e � 10 ms, �i � 20 ms
c1

1,2 Average number of synaptic contacts in the excitatory feedback loop c1
1 � c, c1

2 � 0.8c
c � 135

c2
1,2 Average number of synaptic contacts in the inhibitory feedback loop c2

1 � c2
2 � 0.25c

c3
1,2 c3

1 � c3
2 � 1

�0, e0, r Parameters of the nonlinear sigmoid function �0 � 6 mV, e0 � 5 s�1

r � 0.56 mV�1

Fig. 2. The generalisation of the Jansen model is obtained by splitting the linear operators he,i into N parts  he,i
1 ,. . ., he,i

N  , which represent N populations of
different kinetics. The parameters wn (between 0 and 1) tune the contribution of each population and respect �n�1

N wn � 1.
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some consequences of excitatory to excitatory coupling
have been described already (Jansen and Rit, 1995; Wen-
dling et al., 2000).

In this section we consider two areas, each modelled as
above, and coupled by excitatory connections. To isolate the
effect of coupling, on oscillatory dynamics, we ensured that
the equilibrium activity of each population was maintained,
i.e., the mean and variance of presynaptic input to each
population did not change with coupling. This was achieved
by scaling the presynaptic component from the other area
relative to the extrinsic (noise) input for each set of coupling
parameters. An interpretation of this constraint is that the
coupling value represents the proportion of presynaptic in-
put attributable to the source area. This constraint renders
coupling operationally equivalent to the “contribution” of
one area to another (Friston et al., 1997).

The coupling strategy is shown in Fig. 3, where the
presynaptic inputs enter as deviations from their expectation

p�t� � �p� � p̃�t� (4)

S3� y�t � 	�� � �S3� y�� � S̃3� y�t � 	��

and � � is the average over time. This ensures mean input
is conserved for different coupling parameters. The cou-
pling disposition between two areas means that the output
S̃3(y1) of area 1 contributes to the input of area 2 in propor-
tion to k*12, while the amplitude of extrinsic noise to area 2
decreases by 1 � k12. The directed coupling coefficient k12

is specified between 0 and 1 and k*12 is adjusted to ensure
that the standard deviation (
) of total presynaptic input

�1�k12� p̃2�K12* S̃ 3� y1� is conserved at 
p2. Noting that �p̃2S̃3(y1)�

� 0, it can be rewritten in terms of variance and the
expression of k*12 derived

k*2
12 
S3� y1�

2 � �1 � k12�
2
p2

2 � 
p2

2 f

k12* �

p2

�2k12 � k12
2


S3� y1�
(5)

Similarly for k*21. A precise estimation of the coupling
parameters is important because slight overestimations lead
to exponential growth of oscillations and saturation, due to
the sigmoid functions of the model. Practically, the values
of k*12 were updated at each time step using the sample
variance of S3(y1) over previous time steps (similarly for
k*21). This approach converged for every set of parameters,
after some transient that was removed before further anal-
ysis.

This scheme allowed us to specify a coupling coefficient
k12 bounded between 0 (no coupling) and 1 (no extrinsic
input) without changing the overall inputs to any area. In
other words, for a small coupling between areas, most input
variance, for a given area, is attributable to extrinsic back-
ground activity (white noise). A larger coupling (i.e., con-
tribution) induces a relatively stronger influence of the driv-
ing area.

3. Dynamic properties of simulated signals

For each simulation described below, the differential
equations were solved numerically using a second order

Fig. 3. Coupling of two areas: the mean firing rate of pyramidal cells S3(y) of one area is connected to the input of the other area after applying a propagation
delay 	 and coupling coefficients k12 and k21 (bounded between 0 and 1), which quantify the contribution of one area to the input of the other. Some variables
are expressed as deviations from their expectation (for instance p1,2(t) � �p1,2� � p̃1,2(t)).
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Runge-Kutta algorithm (a fourth-fifth order Runge-Kutta
method gave similar results). As it is known that this type of
algorithm is not optimal for stochastic differential equa-
tions, we compared the simulated signals with those gener-
ated using a second order stochastic Runge-Kutta algorithm
(Honeycutt, 1992). There were no qualitative differences
between the two integration schemes. The time resolution
was 1 ms. The extrinsic input p(t) was a Gaussian innova-
tion (�p� � 220, 
p � 22) simulating input from unspecified
cortical and subcortical areas.

3.1. Neural kinetics and oscillations in the Jansen model

The typical parameters, proposed by Jansen and Rit
(1995), enable the generation of alpha rhythms. To inves-
tigate which other rhythms emerge, using physiologically
plausible values of average membrane time constants and
time delays, we varied the values of �e,i. To ensure oscilla-
tory behaviour, the ratio He,i/�e,i was held constant. We used
the ratio shown in Table 1 and adjusted the value of He,i

according to the values of �e,i.
The parameters �e,i varied from 2 to 60 ms with a step

size of 2 ms. Simulated signals were of 1-s duration. Fig. 4
summarises the results of these simulations. For each com-
bination of �e,i, we first checked whether signals exhibited a
quasi-sinusoidal activity or saturated hyperactivity. In the
case of quasi-sinusoidal activity, the peak frequency of the
oscillations was measured and the dynamics were assigned
to a MEG/EEG band. The results of these classifications are
shown in Fig. 4. For each of the six domains of Fig. 4, a
typical signal is shown. It appears that adjusting the kinetic
properties of neural subpopulations in the Jansen model
engenders oscillatory signals from the delta to the gamma
band. However, one must note that the results in Fig. 4

depend critically upon the value of the parameters ck
1,2

which determine the oscillatory frequency range.

3.2. Oscillations in the generalised Jansen model

For the sake of simplicity, we consider only the gener-
alised model in the particular case of two populations with
different kinetics (a dual-kinetics model). We specified the
parameters so that the resonant frequency of the slow pop-
ulation fell in the alpha band, according to the Jansen model
(�e

1 � 10.8 ms; �i
1 � 22 ms). We tuned the kinetics of the

fast population (�e
2 � 4.6 ms; �i

2 � 2.9 ms) so that it
resonated in the gamma band, emulating local neuronal
pacemakers (Jefferys et al., 1996). As noted above, the
relative size of the two populations is tuned by the param-
eters w1 and w2, which lie between 0 and 1 where w1 � w2

� 1. For simplicity, we define w � w1 and consider this
single ratio parameter, given that w2 � 1 � w. This con-
figuration was chosen to explore the alpha, beta, and gamma
dynamics using a minimal model as shown below. When
reproducing real data, the model configuration can be
changed to emulate observed oscillations.

Fig. 5 shows the influence of w on simulated dynamics.
For several values of w, signals were simulated with and
without extrinsic input. On the right-hand side, the time
courses and their spectra averaged over 10 trials to attenuate
the contribution from stochastic innovations. When w � 0
or w � 1, oscillations are produced even without extrinsic
input, as shown on the left-hand side. For intermediate
values of w, oscillations are driven stochastically by the
input (i.e., no oscillatory dynamics in the absence of input).
Variation of w transforms the spectrum of simulated MEG/
EEG signals from alpha to gamma bands. It is interesting to
note that the spectrum is never bimodal, even when both

Fig. 4. Rhythms generated using the Jansen model for different synaptic kinetics [�e, �i]. On the left-hand side, a phase-space representation was obtained
by measuring the peak frequency of oscillations after averaging over 10 realisations. The greyscale codes different frequency bands [delta (1–4 Hz), theta
(4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), gamma (�30 Hz)]. The black area is a zone of hypersignal not representative of normal activity. Examples
of simulated signals are shown on the right-hand side.
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populations contribute substantially, and most characteristic
MEG/EEG spectra are obtained when w falls between 0.8
and 1.

3.3. Coupling and simulated dynamics

In this section we restrict our simulations to a model
composed of two areas using the dual-kinetics model of the
previous subsection and investigate the influence of cou-
pling strength and propagation delay on the rhythms gen-
erated. A propagation delay 	 of 10 ms was assumed. As the
model allows either unidirectional or bidirectional coupling,
we considered both possibilities. For each parameter con-
figuration, signals were generated for 20 different realisa-
tions of extrinsic noise p1,2(t). To look at the effect of
coupling on oscillations, we computed the spectra of signals
and their coherence function to identify frequency bands
that contain interactions.

3.3.1. Identical areas
First, we investigated the influence of coupling between

two identical areas. To generate characteristic MEG/EEG
signals, the parameters w1 and w2 corresponding to areas 1
and 2 respectively, were set to 0.8 (see Fig. 5).

First, area 1 was connected so as to drive area 2 by
setting k21 to 0. Meanwhile k12 was set to either 0 or 0.5.
Fig. 6 shows simulated signals, and the ensuing spectra and
coherence function averaged over trials. With this unidirec-

tional coupling, the spectrum of the driven area became
mildly more frequency specific and the coherence in-
creased. We observed a systematic delay of 18 ms between
the signals in area 1 and 2, as indexed by the maximum of
the cross-correlation function. This time delay was indepen-
dent of the strength of the coupling and can be decomposed
into the propagation delay (10 ms) and a synaptic delay (8
ms).

Second, bidirectional coupling was simulated by setting
k12 equal to k21. The results are shown in Fig. 7. The
consequence of a bidirectional coupling was a phase-lock-
ing of well-defined oscillations as reflected in the very high
coherence in two frequency bands, with a phase shift equal
to 0 (in this simulation). In fact, as shown below, the relative
phase between oscillations depends mostly upon the prop-
agation delay and is equal to either 0 or �.

3.3.2. Areas with different kinetics
So far we have assumed that brain areas have the same

composition of fast and slow neuronal populations (mod-
elled by the parameter w). However, this mixture depends
upon the brain structures involved. For instance, gamma
rhythms may be more readily generated by the hippocampus
(Whittington et al., 2000b) relative to some other areas. We
investigated the scenario in which a fast oscillatory area (w1

� 0.2), such as the hippocampus, is coupled to a slower area
(w2 � 0.8), say in a cortical area. The results shown below
were obtained when the fast area drives the slow area or

Fig. 5. Dependence of oscillations upon the parameter w used in the dual-kinetic model in order to tune the relative contribution of slow (	10 Hz) and fast
(	43 Hz) kinetics. On the right-hand side, the time courses and their spectra averaged over 10 trials are shown when extrinsic input is applied (
p 
 0). When
w � 0 or w � 1, oscillations are produced even without extrinsic input (
p � 0) as shown on the left-hand side. For intermediate values of w, oscillations
are driven stochastically by the input noise.
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Fig. 6. Unidirectional coupling of two identical areas (w1 � w2 � 0.8, 	 � 10 ms). The top of the panel shows signals and their coherence when no coupling
is applied. When unidirectional coupling is applied (area 1 drives area 2 on the bottom of the panel), the spectrum of area 2 gets narrower and coherence
increases indicating a phase-locking of activities at the frequencies of oscillations. Because of the unidirectional coupling, the activity of area 2 is delayed
in relation to area 1.

Fig. 7. Bidirectional coupling of two identical areas (w1 � w2 � 0.8, k12 � k21, 	 � 10 ms). The top of the panel shows signals and their coherence when
no coupling is applied. When bidirectional coupling is applied (bottom of the panel), the both spectra get very peaky, with one or two main frequencies of
oscillations depending on the value of 	 (Fig. 10). Moreover, the oscillations are in phase or antiphase, thus the coherence increases in the frequency bands
of interaction.



when the two areas are reciprocally coupled. Except for the
change to w1, the simulation parameters were the same as in
the previous section.

Fig. 8 shows the results of simulations when the fast area
drives the slow area (unidirectional coupling). A conse-
quence of coupling is the emergence, in the slow area, of the
fast rhythms expressed in the driving area. There is no
modification of the slow oscillations intrinsic to the driven
area but an increase of the coherence in the upper frequency
band. As shown in Fig. 9, there is again a dramatic differ-
ence between rhythms generated using uni- and bidirec-
tional coupling.

3.3.3. The influence of propagation delay and coupling
strength

There are several lines of experimental evidence that
suggest the distance between areas is negatively correlated
within the frequency of some oscillations in the EEG
(Nunez, 2000; von Stein and Sarnthein, 2000). We investi-
gated this, using our model, by varying the propagation
delay 	 from 5 to 40 ms with 5-ms steps. Meanwhile the
coupling strength k � k12 � k21 was varied from 0.1 to 0.9
with a step size of 0.1. The architecture comprised two
identical dual-kinetic areas with w1 � w2 � 0.8 that were
reciprocally coupled.

For each set of parameters [k,	], 10 realisations were
obtained. Results are summarised in Fig. 10. A map of the
frequency f0 corresponding to the maximal peak of the
average spectrum is shown: f0 depends largely on the prop-
agation delay 	 and less on the coupling strength k. The
average relative phase �1 � �2 at the frequency f0 is either
equal to 0 or � depending on the value of 	 for strong
coupling. Exemplar signals, obtained for k � 0.1 and 0.9 are
shown. For k � 0.1 and large values of 	 (�15 ms), the
spectrum is unimodal and f0 decreases with 	. However,
within a small range of 	 the spectra are bimodal, exhibiting
peaks in alpha and beta bands. Increasing the coupling leads
to quasi-sinusoidal activity.

In summary, a reciprocal coupling is characterised by
well-defined oscillatory signals in phase or antiphase, even
in the context of a large propagation delay. These findings
agree with the experimental evidence of zero-lag synchro-
nisation among remote cortical areas of spiking activity in
awake animals (Chawla et al., 2001; Roelfsema et al.,
1997). The relationship between the MEG/EEG spectrum
and the distance between coupled areas is substantial. This
supports the notion that propagation delay is a critical pa-
rameter in the genesis of frequency-specific interactions
among cortical regions.

Fig. 8. Unidirectional coupling of two different areas (w1 � 0.2, w2 � 0.8, 	 � 10 ms). The faster area (area 1) drives area 2 (k21 � 0). The coupling makes
appear fast rhythms in area 2 with no change in its intrinsic oscillations (slow rhythms). The coherence function increases mostly in the frequency band of
area 1.
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Fig. 9. Bidirectional coupling of two different areas (w1 � 0.2, w2 � 0.8, k12 � k21, 	 � 10 ms). The spectra on the right are modified by the coupling (two
well-defined frequency bands). The coherence function shows that the oscillations are phase-locked within each frequency band.

Fig. 10. Influence of the propagation delay and coupling strength upon oscillations of two mutually coupled identical areas (w1 � w2 � 0.8). For each set
of parameters [k, 	], 10 realisations were performed. Top centre: a map of the frequency f0 corresponding to the maximal peak of the average spectrum is
shown: f0 depends largely on the propagation delay 	 and less on the coupling strength k. Bottom center: the average relative phase �1 � �2 at the frequency
f0 is either equal to 0 or � depending on the value of 	 for strong coupling. Exemplar signals obtained for k � 0.1 and 0.9 are shown. For k � 0.1 and large
values of 	 (�15 ms), the spectrum is unimodal and f0 decreases with 	. However, within a small range of 	 the spectra are bimodal exhibiting peaks in alpha
and beta bands. Increasing the coupling yields to quasi-sinusoidal activity.
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4. Discussion

Neural mass models afford a straightforward approach to
modelling the activity of populations of neurons. Their main
assumption is that the state of the population can be approx-
imated using very few state variables (generally limited to
mean membrane currents, potentials, and firing rates).
Given a macroscopic architecture, describing the overall
connectivity (1) between populations of a given cortical
area, and (2) between different cortical areas, it is possible
to simulate the steady-state dynamics of the system or even
the transient response to a perturbation of extrinsic input or
connectivity. Consequently, neural mass models are useful
to describe and predict the macroscopic electrical activity of
the brain. Since the early 1970s, they have been used to
address several important issues, e.g., alpha rhythms (Lopes
da Silva et al., 1997), olfactory responses (Freeman, 1987),
and focal attention (Suffczynski et al., 2001). They are now
being introduced into neuroimaging to understand the un-
derlying neuronal mechanisms of fMRI and PET data
(Almeida and Stetter, 2002; Aubert and Costalat, 2002;
Horwitz and Tagamets, 1999).

Despite their relative simplicity, neural mass models can
exhibit complex dynamical behaviour reminiscent of the
real brain. In this study we have shown that physiologically
plausible synaptic kinetics lead to the emergence of oscil-
latory MEG/EEG-like signals covering the range of theta to
gamma bands (Fig. 4). To emulate more complex oscilla-
tory MEG/EEG dynamics, we have proposed a generalisa-
tion of the Jansen model that incorporates several distinct
neural populations that resonate at different frequencies.
Changing the composition of these populations induces a
modulation of the spectrum of simulated MEG/EEG signals
(Fig. 5).

We have investigated the consequence of coupling two
remote cortical areas. It appears that the rhythms generated
depend critically upon both the strength of the coupling and
the propagation delay. As the coupling directly modulates
the contribution of one area to another, the spectrum of the
driven area, in the case of a unidirectional coupling, is
obviously a mixture of the source and target spectra (Figs.
6 and 8). More interestingly, a bidirectional coupling en-
genders more marked modifications of the MEG/EEG spec-
trum that can include strong oscillatory activity (Figs. 7, 9,
and 10). Bidirectional coupling is important because of the
high proportion of reciprocal connections in the brain. The
most robust consequence of coupling is phase synchronisa-
tion of remote oscillations. In the case of a bidirectional
coupling, this phase-locking appeared to be equal to either
0 or �, depending upon the propagation delay (the phase-
shift reflects the propagation delay if only unidirectional
coupling is considered).

An important issue, which has not been addressed in this
study, is how the model can be used to fit real data. The idea
here is to treat the model as a forward or generative model
of observed signals and estimate the model parameters

given observations. The first step is to specify a network
architecture (number of areas and how they are connected)
with a small number of populations per area. For instance,
for standard awake MEG/EEG recordings, three popula-
tions with intrinsic oscillations in the theta, alpha, and
gamma bands may be sufficient to reproduce a large variety
of spectra. Conditional estimates of the coupling and pop-
ulation composition parameters could, in principle, be ob-
tained using procedures such as those proposed by Valdes et
al. (1999) using measured data. See also Robinson et al.
(2001); Friston (2002) and Friston et al. (2002).

Obviously neural mass models do not describe exactly
how neural signals interact. These models represent a sum-
mary of underlying neurophysiological processes that can-
not be modelled in complete detail because of their com-
plexity. In particular, the model we used does not
accommodate explicitly subcortical structures such as the
reticular nuclei of the thalamus, which is thought to be
involved in the genesis delta and alpha oscillations of the
EEG (Steriade, 2001; Lumer et al., 1997). Despite these
limitations, neural mass models are useful in helping to
understand some macroscopic properties of MEG/EEG sig-
nals, such as nonlinearities (Stam et al., 1999) and coupling
characteristics (Wendling et al., 2000). They can also be
used to reconstruct a posteriori the scenario of inhibition/
excitation balance during epileptic seizures (Wendling et
al., 2002). Moreover, fitting simple models to actual MEG/
EEG data, as described above, allows one to empirically
determine likely ranges for some important physiological
parameters (e.g., Robinson et al., 2001; Valdes et al., 1999).

In a forthcoming study we investigate the sensitivity of
measures of regional interdependencies in MEG/EEG data,
illustrating an important practical use of neural mass mod-
els. It is known that some interactions among cortical areas
are reflected in MEG/EEG signals. In the literature, numer-
ous analytic tools are used to reveal these statistical depen-
dencies. These methods include cross-correlation, coher-
ence (Clifford Carter, 1987), mutual information (Roulston,
1999), nonlinear correlation (Pijn et al., 1992), nonlinear
interdependencies or generalised synchronisation (Arnhold
et al., 1999), neural complexity (Tononi et al., 1994), syn-
chronisation likelihood (Stam and van Dijk, 2002), and
phase synchronisation (Lachaux et al., 1999; Tass et al.,
1998). These interdependencies are established in a way that
allows one to make inferences about the nature of the
coupling. However, it is not clear which aspects of neuronal
interactions are critical for causing the frequency-specific
linear and nonlinear dependencies observed. Using the
model described in this study, we will estimate how synap-
tic activity and neuronal interactions are expressed in MEG/
EEG data and establish the construct validity of various
indices of nonlinear coupling.

Another important application of neural mass models is
the study of event-related dynamics. Indeed events can be
simulated easily by using impulses of extrinsic input p(t) to
cortical areas. The consequence of such input is a transient
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modulation of oscillations on which is superimposed the
system’s impulse response. This impulse response can be
estimated by averaging single trials. Simulating evoked
transients of this sort allows one to derive physiologically
motivated basis functions that can be used for statistical
inferences of averaged evoked potentials/fields in the frame-
work of the general linear model as already used for fMRI
(Frackowiak et al., 1997). This device could potentially
bring the analysis of MEG/EEG data into a common PET/
fMRI/MEG/EEG framework.
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